A self-propelled biohybrid swimmer at low Reynolds number.
نویسندگان
چکیده
Many microorganisms, including spermatozoa and forms of bacteria, oscillate or twist a hair-like flagella to swim. At this small scale, where locomotion is challenged by large viscous drag, organisms must generate time-irreversible deformations of their flagella to produce thrust. To date, there is no demonstration of a self propelled, synthetic flagellar swimmer operating at low Reynolds number. Here we report a microscale, biohybrid swimmer enabled by a unique fabrication process and a supporting slender-body hydrodynamics model. The swimmer consists of a polydimethylsiloxane filament with a short, rigid head and a long, slender tail on which cardiomyocytes are selectively cultured. The cardiomyocytes contract and deform the filament to propel the swimmer at 5-10 μm s(-1), consistent with model predictions. We then demonstrate a two-tailed swimmer swimming at 81 μm s(-1). This small-scale, elementary biohybrid swimmer can serve as a platform for more complex biological machines.
منابع مشابه
Enhanced controllability of low Reynolds number swimmers in the presence of a wall
Swimming, i.e., being able to advance in the absence of external forces by performing cyclic shape changes, is particularly demanding at low Reynolds numbers which is the regime of interest for micro-organisms and micro-robots. We focus on self-propelled stokesian robots composed of assemblies of balls and we prove that the presence of a wall has an effect on their motility. To rest on what has...
متن کاملStochastic low Reynolds number swimmers.
As technological advances allow us to fabricate smaller autonomous self-propelled devices, it is clear that at some point directed propulsion could not come from pre-specified deterministic periodic deformation of the swimmer's body and we need to develop strategies for extracting a net directed motion from a series of random transitions in the conformation space of the swimmer. We present a th...
متن کاملA study of self-propelled elastic cylindrical micro-swimmers using modeling and computation
We study propulsion of micro-swimmers in 3D creeping flow. The swimmers are assumed to be made of elastic cylindrical hollow tubes. The swimming is generated by the contractions of the tube’s elastic membrane walls producing a traveling wave in the form of a “step-function” traversing the swimmer from right to left, propelling the swimmer from left to right. The problem is motivated by medical ...
متن کاملSwimming with a cage: low-Reynolds-number locomotion inside a droplet.
Inspired by recent experiments using synthetic microswimmers to manipulate droplets, we investigate the low-Reynolds-number locomotion of a model swimmer (a spherical squirmer) encapsulated inside a droplet of a comparable size in another viscous fluid. Meditated solely by hydrodynamic interactions, the encaged swimmer is seen to be able to propel the droplet, and in some situations both remain...
متن کاملThe well-posedness of a swimming model in the 3-D incompressible fluid governed by the nonstationary Stokes equation
We introduce and investigate the well-posedness of a model describing the self-propelled motion of a small abstract swimmer in the 3-D incompressible fluid governed by the nonstationary Stokes equation, typically associated with low Reynolds numbers. It is assumed that the swimmer’s body consists of finitely many subsequently connected parts, identified with the fluid they occupy, linked by rot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature communications
دوره 5 شماره
صفحات -
تاریخ انتشار 2014